Buy ub-news.com ?

Products related to Heat:


  • Pioneering Progress : American Science, Technology, and Innovation Policy
    Pioneering Progress : American Science, Technology, and Innovation Policy


    Price: 48.00 £ | Shipping*: 0.00 £
  • Handbook of Research on Science Teacher Education
    Handbook of Research on Science Teacher Education

    This groundbreaking handbook offers a contemporary and thorough review of research relating directly to the preparation, induction, and career long professional learning of K–12 science teachers. Through critical and concise chapters, this volume provides essential insights into science teacher education that range from their learning as individuals to the programs that cultivate their knowledge and practices.Each chapter is a current review of research that depicts the area, and then points to empirically based conclusions or suggestions for science teacher educators or educational researchers.Issues associated with equity are embedded within each chapter.Drawing on the work of over one hundred contributors from across the globe, this handbook has 35 chapters that cover established, emergent, diverse, and pioneering areas of research, including: Research methods and methodologies in science teacher education, including discussions of the purpose of science teacher education research and equitable perspectives; Formal and informal teacher education programs that span from early childhood educators to the complexity of preparation, to the role of informal settings such as museums; Continuous professional learning of science teachers that supports building cultural responsiveness and teacher leadership; Core topics in science teacher education that focus on teacher knowledge, educative curricula, and working with all students; and Emerging areas in science teacher education such as STEM education, global education, and identity development. This comprehensive, in-depth text will be central to the work of science teacher educators, researchers in the field of science education, and all those who work closely with science teachers.

    Price: 99.99 £ | Shipping*: 0.00 £
  • Handbook of Research on Science Education : Volume III
    Handbook of Research on Science Education : Volume III

    Volume III of this landmark synthesis of research offers a comprehensive, state-of-the-art survey highlighting new and emerging research perspectives in science education. Building on the foundations set in Volumes I and II, Volume III provides a globally minded, up-to-the-minute survey of the science education research community and represents the diversity of the field.Each chapter has been updated with new research and new content, and Volume III has been further developed to include new and expanded coverage on astronomy and space education, epistemic practices related to socioscientific issues,design-based research, interdisciplinary and STEM education, inclusive science education, and the global impact of nature of science and scientific inquiry literacy. As with the previous volumes, Volume III is organized around six themes: theory and methods of science education research; science learning; diversity and equity; science teaching; curriculum and assessment; and science teacher education.Each chapter presents an integrative review of the research on the topic it addresses, pulling together the existing research, working to understand historical trends and patterns in that body of scholarship, describing how the issue is conceptualized within the literature, how methods and theories have shaped the outcomes of the research, and where the strengths, weaknesses, and gaps are in the literature. Providing guidance to science education faculty, scholars, and graduate students, and pointing towards future directions of the field, Handbook of Research on Science Education Research, Volume III offers an essential resource to all members of the science education community.

    Price: 110.00 £ | Shipping*: 0.00 £
  • Gender Differences in Technology and Innovation Management : Insights from Experimental Research
    Gender Differences in Technology and Innovation Management : Insights from Experimental Research

    Even though the number of working women has steadily increased over the last few years, women are still significantly under-represented in STEM activities (i.e. mathematics, informatics, science and technology). In order to eliminate this under-representation, numerous education policies and corporate initiatives, particularly in the recent past, have been aimed at increasing women's enthusiasm for STEM activities and professions.According to the latest surveys, however, it is clear that these efforts have not yet led to the desired success.Compared to their male counterparts, women continue to do fewer STEM activities. One possible reason for this is that relatively little is yet known about the concrete impact of the above education policies on working with innovation and technology: What are the gender differences between women and men?Is it enough to recognize these differences, or should these differences ideally not only be recognized, but also treated appropriately or even encouraged? This anthology deals with current topics in technology and innovation management against the background of these and other gender-relevant aspects.Empirical analyses and experiments in collaboration with companies from various sectors provide a sound scientific basis on which new results and findings are presented: How do women and men deal with creativity and competition?How are technologies applied and how can differences in access to technology be deduced? Answers to these and other questions help decision-makers in politics and business to proactively use the differences between women and men to motivate women to work in the STEM field and to strengthen them by acknowledging existing differences.

    Price: 96.50 £ | Shipping*: 0.00 £
  • How can one heat water using hypersonic technology?

    Hypersonic technology can be used to heat water by utilizing the intense heat generated from the high-speed movement of air or gas. This can be achieved by using a hypersonic combustion chamber to create extremely high temperatures, which can then be used to heat water directly or to generate steam for various applications. Additionally, hypersonic technology can also be used to harness the kinetic energy of the high-speed airflow to drive turbines, which can then be used to generate electricity for heating water. Overall, hypersonic technology offers a potential means to efficiently and rapidly heat water for various industrial and commercial purposes.

  • Does market research hinder innovation in business administration?

    Market research does not necessarily hinder innovation in business administration. In fact, it can provide valuable insights into consumer needs and preferences, helping businesses to develop innovative products and services that meet market demands. By understanding market trends and customer behavior, businesses can identify opportunities for innovation and stay ahead of competitors. However, relying too heavily on market research without allowing room for creativity and risk-taking can limit the potential for groundbreaking innovations. It is important for businesses to strike a balance between leveraging market research and fostering a culture of innovation to drive success in business administration.

  • Do heat pumps with inverter technology require a buffer storage tank?

    Heat pumps with inverter technology do not necessarily require a buffer storage tank, as the inverter technology allows the heat pump to modulate its output to match the heating or cooling demand of the building. This means that the heat pump can adjust its capacity based on the building's needs, reducing the need for a buffer storage tank to store excess energy. However, in some cases, a buffer storage tank may still be beneficial to optimize the performance and efficiency of the heat pump system, especially in larger or more complex heating and cooling systems. Ultimately, the need for a buffer storage tank will depend on the specific requirements and design of the heating and cooling system.

  • Which material absorbs heat without storing heat?

    A material that absorbs heat without storing it is one that has a high thermal conductivity and low heat capacity. This means that it can quickly absorb heat and transfer it away without retaining much of the heat energy. Examples of such materials include metals like aluminum and copper, as well as certain types of ceramics and carbon-based materials. These materials are often used in applications where rapid heat absorption and dissipation are required, such as in heat sinks for electronic devices or in cooking utensils.

Similar search terms for Heat:


  • Makerspaces, Innovation and Science Education : How, Why, and What For?
    Makerspaces, Innovation and Science Education : How, Why, and What For?

    This book provides an overview to a range of theories in science and technology that inform the different ways in which makerspaces can be educative.Makerspaces are an indispensable site for science, technology, engineering, and mathematics (STEM) instruction and pose novel risks and opportunities for STEM instruction.Educators are likely to reach towards activities that have a high degree of engagement, but this might result in observations like 'it looks like fun, but what are they learning?'. Beginning from the question of how we know what we know in science, the author asserts that understanding scientific knowledge requires us to know more than the abstract concepts typically presented in schools.The social and material aspects of knowledge are also important—these take the form of questions such as: What is the interplay between knowledge and power?How do we understand that we can have a ‘feel’ for materials and artefacts that we cannot completely describe in words?How do we know what ideas ought to be made real though technology and engineering?Significantly, this book also discusses the ethical dimensions of STEM education, in thinking about the kinds of STEM education that could be useful for open futures. This book will be useful to graduate students and educators seeking an expansive view of STEM education.More generally, these ideas outline a possible new strategy for a vision of school that is not merely training or preparing students for work.Education needs to also prepare students for sociopolitical participation, and with STEM being central to our contemporary lives, this book provides insights for how this can happen in makerspaces.

    Price: 35.99 £ | Shipping*: 0.00 £
  • Dialogues Between Artistic Research and Science and Technology Studies
    Dialogues Between Artistic Research and Science and Technology Studies

    This edited volume maps dialogues between science and technology studies research on the arts and the emerging field of artistic research.The main themes in the book are an advanced understanding of discursivity and reasoning in arts-based research, the methodological relevance of material practices and things, and innovative ways of connecting, staging, and publishing research in art and academia.This book touches on topics including studies of artistic practices; reflexive practitioners at the boundaries between the arts, science, and technology; non-propositional forms of reasoning; unconventional (arts-based) research methods and enhanced modes of presentation and publication.

    Price: 36.99 £ | Shipping*: 0.00 £
  • Hydraulic Excavator DIY Student Technology Small Production Science and Education Toy Model Science
    Hydraulic Excavator DIY Student Technology Small Production Science and Education Toy Model Science

    Hydraulic Excavator DIY Student Technology Small Production Science and Education Toy Model Science

    Price: 1.53 € | Shipping*: 1.99 €
  • Handbook of Research on Science Teacher Education
    Handbook of Research on Science Teacher Education

    This groundbreaking handbook offers a contemporary and thorough review of research relating directly to the preparation, induction, and career long professional learning of K–12 science teachers. Through critical and concise chapters, this volume provides essential insights into science teacher education that range from their learning as individuals to the programs that cultivate their knowledge and practices.Each chapter is a current review of research that depicts the area, and then points to empirically based conclusions or suggestions for science teacher educators or educational researchers.Issues associated with equity are embedded within each chapter.Drawing on the work of over one hundred contributors from across the globe, this handbook has 35 chapters that cover established, emergent, diverse, and pioneering areas of research, including: Research methods and methodologies in science teacher education, including discussions of the purpose of science teacher education research and equitable perspectives; Formal and informal teacher education programs that span from early childhood educators to the complexity of preparation, to the role of informal settings such as museums; Continuous professional learning of science teachers that supports building cultural responsiveness and teacher leadership; Core topics in science teacher education that focus on teacher knowledge, educative curricula, and working with all students; and Emerging areas in science teacher education such as STEM education, global education, and identity development. This comprehensive, in-depth text will be central to the work of science teacher educators, researchers in the field of science education, and all those who work closely with science teachers.

    Price: 250.00 £ | Shipping*: 0.00 £
  • What is heat conduction and heat convection?

    Heat conduction is the transfer of heat through a material or between materials that are in direct contact with each other. It occurs through the vibration and collision of atoms and molecules, leading to the transfer of thermal energy. On the other hand, heat convection is the transfer of heat through the movement of fluids, such as air or water. This occurs as warmer, less dense fluid rises and cooler, denser fluid sinks, creating a continuous circulation of heat transfer. Both heat conduction and heat convection are important mechanisms for the transfer of heat in various natural and engineered systems.

  • How much heat does a heat radiator produce?

    The amount of heat produced by a heat radiator depends on its size, design, and the temperature of the water or steam flowing through it. Generally, a heat radiator can produce enough heat to warm up a room or a specific area within a building. The heat output is measured in British Thermal Units (BTUs) or watts, and can vary depending on the specific model and its intended use. It's important to consider the heat output of a radiator when selecting the right one for a particular space.

  • Are there ovens that heat using heat pumps?

    Yes, there are ovens that use heat pumps to heat food. These ovens are known as heat pump ovens and they work by using a heat pump system to transfer heat from the surrounding air into the oven cavity. This allows them to be more energy efficient compared to traditional ovens, as they do not rely solely on electrical resistance heating. Heat pump ovens are becoming increasingly popular as people look for more sustainable and energy-efficient cooking options.

  • What is heat transfer in a heat exchanger?

    Heat transfer in a heat exchanger is the process of exchanging thermal energy between two fluids at different temperatures. This transfer occurs through conduction, convection, or radiation, depending on the design of the heat exchanger. The goal of heat transfer in a heat exchanger is to efficiently and effectively transfer heat from one fluid to another, either to heat or cool the fluids involved. This process is essential in various industrial and commercial applications, such as HVAC systems, refrigeration, and power generation.

* All prices are inclusive of VAT and, if applicable, plus shipping costs. The offer information is based on the details provided by the respective shop and is updated through automated processes. Real-time updates do not occur, so deviations can occur in individual cases.