Products related to Similarity:
-
An Invitation to Fractal Geometry : Fractal Dimensions, Self-Similarity and Fractal Curves
Price: 112.00 £ | Shipping*: 0.00 £ -
An Invitation to Fractal Geometry : Fractal Dimensions, Self-Similarity and Fractal Curves
Price: 74.00 £ | Shipping*: 0.00 £ -
Pioneering Progress : American Science, Technology, and Innovation Policy
Price: 48.00 £ | Shipping*: 0.00 £ -
Handbook of Research on Science Teacher Education
This groundbreaking handbook offers a contemporary and thorough review of research relating directly to the preparation, induction, and career long professional learning of K–12 science teachers. Through critical and concise chapters, this volume provides essential insights into science teacher education that range from their learning as individuals to the programs that cultivate their knowledge and practices.Each chapter is a current review of research that depicts the area, and then points to empirically based conclusions or suggestions for science teacher educators or educational researchers.Issues associated with equity are embedded within each chapter.Drawing on the work of over one hundred contributors from across the globe, this handbook has 35 chapters that cover established, emergent, diverse, and pioneering areas of research, including: Research methods and methodologies in science teacher education, including discussions of the purpose of science teacher education research and equitable perspectives; Formal and informal teacher education programs that span from early childhood educators to the complexity of preparation, to the role of informal settings such as museums; Continuous professional learning of science teachers that supports building cultural responsiveness and teacher leadership; Core topics in science teacher education that focus on teacher knowledge, educative curricula, and working with all students; and Emerging areas in science teacher education such as STEM education, global education, and identity development. This comprehensive, in-depth text will be central to the work of science teacher educators, researchers in the field of science education, and all those who work closely with science teachers.
Price: 99.99 £ | Shipping*: 0.00 £
-
What are similarity ratios?
Similarity ratios are ratios that compare the corresponding sides of two similar figures. They help us understand the relationship between the sides of similar shapes. The ratio of corresponding sides in similar figures is always the same, which means that if you know the ratio of one pair of sides, you can use it to find the ratio of other pairs of sides. Similarity ratios are important in geometry and are used to solve problems involving similar figures.
-
What is the difference between similarity theorem 1 and similarity theorem 2?
Similarity theorem 1, also known as the Angle-Angle (AA) similarity theorem, states that if two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar. On the other hand, similarity theorem 2, also known as the Side-Angle-Side (SAS) similarity theorem, states that if two sides of one triangle are proportional to two sides of another triangle and the included angles are congruent, then the triangles are similar. The main difference between the two theorems is the criteria for establishing similarity - AA theorem focuses on angle congruence, while SAS theorem focuses on both side proportionality and angle congruence.
-
How can one calculate the similarity factor to determine the similarity of triangles?
The similarity factor can be calculated by comparing the corresponding sides of two triangles. To do this, one can divide the length of one side of the first triangle by the length of the corresponding side of the second triangle. This process is repeated for all three pairs of corresponding sides. If the ratios of the corresponding sides are equal, then the triangles are similar, and the similarity factor will be 1. If the ratios are not equal, the similarity factor will be the ratio of the two triangles' areas.
-
How can the similarity factor for determining the similarity of triangles be calculated?
The similarity factor for determining the similarity of triangles can be calculated by comparing the corresponding sides of the two triangles. If the ratio of the lengths of the corresponding sides of the two triangles is the same, then the triangles are similar. This ratio can be calculated by dividing the length of one side of a triangle by the length of the corresponding side of the other triangle. If all three ratios of corresponding sides are equal, then the triangles are similar. This is known as the similarity factor and is used to determine the similarity of triangles.
Similar search terms for Similarity:
-
Handbook of Research on Science Teacher Education
This groundbreaking handbook offers a contemporary and thorough review of research relating directly to the preparation, induction, and career long professional learning of K–12 science teachers. Through critical and concise chapters, this volume provides essential insights into science teacher education that range from their learning as individuals to the programs that cultivate their knowledge and practices.Each chapter is a current review of research that depicts the area, and then points to empirically based conclusions or suggestions for science teacher educators or educational researchers.Issues associated with equity are embedded within each chapter.Drawing on the work of over one hundred contributors from across the globe, this handbook has 35 chapters that cover established, emergent, diverse, and pioneering areas of research, including: Research methods and methodologies in science teacher education, including discussions of the purpose of science teacher education research and equitable perspectives; Formal and informal teacher education programs that span from early childhood educators to the complexity of preparation, to the role of informal settings such as museums; Continuous professional learning of science teachers that supports building cultural responsiveness and teacher leadership; Core topics in science teacher education that focus on teacher knowledge, educative curricula, and working with all students; and Emerging areas in science teacher education such as STEM education, global education, and identity development. This comprehensive, in-depth text will be central to the work of science teacher educators, researchers in the field of science education, and all those who work closely with science teachers.
Price: 250.00 £ | Shipping*: 0.00 £ -
Handbook of Research on Science Education : Volume III
Volume III of this landmark synthesis of research offers a comprehensive, state-of-the-art survey highlighting new and emerging research perspectives in science education. Building on the foundations set in Volumes I and II, Volume III provides a globally minded, up-to-the-minute survey of the science education research community and represents the diversity of the field.Each chapter has been updated with new research and new content, and Volume III has been further developed to include new and expanded coverage on astronomy and space education, epistemic practices related to socioscientific issues,design-based research, interdisciplinary and STEM education, inclusive science education, and the global impact of nature of science and scientific inquiry literacy. As with the previous volumes, Volume III is organized around six themes: theory and methods of science education research; science learning; diversity and equity; science teaching; curriculum and assessment; and science teacher education.Each chapter presents an integrative review of the research on the topic it addresses, pulling together the existing research, working to understand historical trends and patterns in that body of scholarship, describing how the issue is conceptualized within the literature, how methods and theories have shaped the outcomes of the research, and where the strengths, weaknesses, and gaps are in the literature. Providing guidance to science education faculty, scholars, and graduate students, and pointing towards future directions of the field, Handbook of Research on Science Education Research, Volume III offers an essential resource to all members of the science education community.
Price: 110.00 £ | Shipping*: 0.00 £ -
Gender Differences in Technology and Innovation Management : Insights from Experimental Research
Even though the number of working women has steadily increased over the last few years, women are still significantly under-represented in STEM activities (i.e. mathematics, informatics, science and technology). In order to eliminate this under-representation, numerous education policies and corporate initiatives, particularly in the recent past, have been aimed at increasing women's enthusiasm for STEM activities and professions.According to the latest surveys, however, it is clear that these efforts have not yet led to the desired success.Compared to their male counterparts, women continue to do fewer STEM activities. One possible reason for this is that relatively little is yet known about the concrete impact of the above education policies on working with innovation and technology: What are the gender differences between women and men?Is it enough to recognize these differences, or should these differences ideally not only be recognized, but also treated appropriately or even encouraged? This anthology deals with current topics in technology and innovation management against the background of these and other gender-relevant aspects.Empirical analyses and experiments in collaboration with companies from various sectors provide a sound scientific basis on which new results and findings are presented: How do women and men deal with creativity and competition?How are technologies applied and how can differences in access to technology be deduced? Answers to these and other questions help decision-makers in politics and business to proactively use the differences between women and men to motivate women to work in the STEM field and to strengthen them by acknowledging existing differences.
Price: 96.50 £ | Shipping*: 0.00 £ -
Makerspaces, Innovation and Science Education : How, Why, and What For?
This book provides an overview to a range of theories in science and technology that inform the different ways in which makerspaces can be educative.Makerspaces are an indispensable site for science, technology, engineering, and mathematics (STEM) instruction and pose novel risks and opportunities for STEM instruction.Educators are likely to reach towards activities that have a high degree of engagement, but this might result in observations like 'it looks like fun, but what are they learning?'. Beginning from the question of how we know what we know in science, the author asserts that understanding scientific knowledge requires us to know more than the abstract concepts typically presented in schools.The social and material aspects of knowledge are also important—these take the form of questions such as: What is the interplay between knowledge and power?How do we understand that we can have a ‘feel’ for materials and artefacts that we cannot completely describe in words?How do we know what ideas ought to be made real though technology and engineering?Significantly, this book also discusses the ethical dimensions of STEM education, in thinking about the kinds of STEM education that could be useful for open futures. This book will be useful to graduate students and educators seeking an expansive view of STEM education.More generally, these ideas outline a possible new strategy for a vision of school that is not merely training or preparing students for work.Education needs to also prepare students for sociopolitical participation, and with STEM being central to our contemporary lives, this book provides insights for how this can happen in makerspaces.
Price: 35.99 £ | Shipping*: 0.00 £
-
Do you see the similarity?
Yes, I see the similarity between the two concepts. Both share common characteristics and features that make them comparable. The similarities can be observed in their structure, function, and behavior. These similarities help in understanding and drawing parallels between the two concepts.
-
'How do you prove similarity?'
Similarity between two objects can be proven using various methods. One common method is to show that the corresponding angles of the two objects are congruent, and that the corresponding sides are in proportion to each other. Another method is to use transformations such as dilation, where one object can be scaled up or down to match the other object. Additionally, if the ratio of the lengths of corresponding sides is equal, then the two objects are similar. These methods can be used to prove similarity in geometric figures such as triangles or other polygons.
-
What is similarity in mathematics?
In mathematics, similarity refers to the relationship between two objects or shapes that have the same shape but are not necessarily the same size. This means that the objects are proportional to each other, with corresponding angles being equal and corresponding sides being in the same ratio. Similarity is often used in geometry to compare and analyze shapes, allowing for the transfer of properties and measurements from one shape to another.
-
What is the similarity ratio?
The similarity ratio is a comparison of the corresponding sides of two similar figures. It is used to determine how the dimensions of one figure compare to the dimensions of another figure when they are similar. The ratio is calculated by dividing the length of a side of one figure by the length of the corresponding side of the other figure. This ratio remains constant for all pairs of corresponding sides in similar figures.
* All prices are inclusive of VAT and, if applicable, plus shipping costs. The offer information is based on the details provided by the respective shop and is updated through automated processes. Real-time updates do not occur, so deviations can occur in individual cases.